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Abstract

Rigorous analytical methods in rough surface scattering lead to integral equations.
In coordinate space these integral equations are written on the surface value of the field
(Neumann, hard, TM boundary value problem), the surface value of the normal
derivative of the field (Dirichlet, Soft, TE) or coupled equations on both (interface or
penetrable surface or dielectric problem). An additional integration is necessary to find
the scattered or transmitted field. In Fourier transform space the corresponding
equations are on the scattering and/or transmission amplitudes with a direct
interpretation as scattered or transmitted fields as a function of angle.

The integral equations express the full multiple scattering solution and this must
be treated numerically. Truncation of the equations can lead to analytical results for
single scattering (which is well known) and for double scattering. We describe here the
approximations necessary to analytically evaluate to closed form the double scattering
term. Specifically for plane wave incidence on a Gaussian distributed rough surface
with a Gaussian correlation function we analytically evaluate the incoherent intensity
for single scattering with correlated heights and slope, and for double scattering where
the heights and slopes are uncorrelated.
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ABSTRACT

" Rigorous analytical methods in rough surface scattering lead to integral equations.

In coordinate space these integral equations are written on the surface value of the field,
.(Neumann, hard, TM boundary value problem),-.the surface value of the normal
derivative of the field (Dirichlet, Soft, TE),or coupled equations on both (interface or

penetrable surface or dielectric problem). An additional integration is necessary to find
the scattered or transmitted field. In Fourier transform space the corresponding
equations are on the scattering and/or transmission amplitudes with a direct

interpretation as scattered or transmitted fields as a function of angle. -[ -I A I. ' , .

The integral equations express the full multiple scattering solution and this must
be treated numerically. Truncation of the equations can lead to analytical results for
single scattering (which is well known) and for double scattering. We describe here the
approximations necessary to analytically evaluate to closed form the double scattering

term. Specifically for plane wave incidence on a Gaussian distributed rough surface
with a Gaussian correlation function we analytically evaluate the incoherent intensity

for single scattering with correlated heights and slopes, and for double scattering where
the heights and slopes are uncorrelated.

- I-



1. INTRODUCTION

Several years ago we introduced k-space integral equations for scattering from a
rough surface using Feynman-diagram and partial summation techniques [1-3].
Numerical solution of a truncated integral equation for the scattering amplitude of the
coherent wave using Gaussian statistics on the surface illustrated the necessity of using
multiple scattering techniques of this type to describe the scattering [4]. For the
coherent field the results agreed well with experimental data into the regime of large
roughness. A review of the specific work as well as a review of the field can be found in
DeSanto and Brown [5].

One approximation used in this previous work was related to the specific way the
transform equation arose from the coordinate-space equation. Recent work on
backscatter enhancement [6,7] has prompted us to attempt to remove this
approximation in order to have an exact version of the k-space equation, and to
thereby enable us to study the single and double scattering approximations of the exact
result. The latter define the boundary between possible analytical approximations and
necessary numerical results in the sense that triple and higher order scattering must be
done numerically. We briefly describe the successful result of this attempt for the
Neumann or hard boundary value problem here.

2. PHASE MODULATION

For a plane wave incident at angle di from the normal, the phase change (with no
horizontal translation) upon reflection into angle 0, from the rough surface z = h(zx)
(with Zr = (z, y)) is given by

- h kcos1 - h kcosO, = (k'-k,)h , (1)

where k is the wavenumber with incident z-component k = - k cos 0i and scattered z-
component k, = k cos 0,. With an additional horizontal translation the full wave
scattering function can be written as

exp[-(k .i'h (2)

where k'(.) is the incident (scattered) direction and zh = (z, y, h) is a point on the
surface. If we multiply this by the (non-unit) normal

nm(i)= bm- amth(2t) (3)

where 61M is the transverse differential operator, and integrate over the transverse
coordinates we get the function



Am(kk- ff C r[ite ,m(xi)dt (4)

which is termed the phase modulated amplitude spectrum. It describes all the
scattering from initial state V' into scattered state k. It is also just the physical optics
approximation for the scattering. It will occur again below in describing the multiple
scattering in the integral equation and of course in the single and double scattering
terms.

3. GREEN'S THEOREM AND THE SCATTERING AMPLITUDE

Using Green's theorem the field scattered from a rough surface, iY, can be written
at a point x as

(z) = f f {n ma G(, z.)i.(z,) - G( zz)N'(;')}dz (5)

in terms of its value on the surface and the value of its normal derivative on the surface

N ' (.:h) = m,,,m?,, '(-h) , (6)

where repeated subscripts are summed from one to three. Here G is the free space
Green's function

G( '= exp [iko I z- I] (7)
47rlz-_' I

and nlm  is just im(Zt). The asymptotic value of the Green's function
(R = zI,;z large)

ik R

h 47rR

yields, using (5), the asymptotic value of the scattered field

-b(x .. 4-r F(k) '(9)

where F(k) is the scattering amplitude
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F() - ffN"( ') + ikd . (10)

It appears as a quasi-Fourier transform over the surface field and normal derivative.
The object is to find an integral equation on F and determine approximations from it.
The actual scattering amplitude is found from (10) set on the energy shell, i.e. set

k= (k4 k2 )'!2

4. NEUMANN PROBLEM

The Neumann (N) boundary value problem is given by the boundary condition

N" (. h) "n,, i,,,''(_1h)

=- r,,m (9m (.;h)

- N'(.m) (1)

which states that the normal derivative of the total field (,0'+ 0') vanishes on the
surface. Here 0/ is the incident field. The result can be written from (10) as

F )(k) =) , (12)

where

Ff/(k) = ff n;dOikt (4)dz , (13)

and

4 g (C) = f f (.=)dz , (14)

where FIV will be shown to describe single scattering (and is known since the incident
field is known) and where the object will be to find an integral equation on km 0',, the
remaining term in (12).

In order to do the latter it is first necessary to formulate an integral equation on
i/. The latter follows from the limit of (5) as x -+ xh, i.e. as z approaches a point on
the surface, and the use of (11). The normal derivative of G in (5) has a discontinuity
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on the surface, and the regularized integral equation can be written as

= 2ffG(/, )N()d - 2ff n Rm(zh - ;'), (h)dx, (15)

which is a second kind equation with a regularized kernel Pm given by (G is the
Fourier transform of G)

Rm~z) [2r3fffCt' G(k)Pm(k)dk , (16)

where

Pm(k) = ikmt +6m 3 K2p i±]] (17)

with K 2 = - k2 . The symbol P represents the Cauchy principal value distribution.

We can then "Fourier" transform (15) using (14) to find an equation on 0". and
thus kmo m' to satisfy (12). The result can be written in the form

FN(k) = FN (k) + FN () + FN'(k) , (18)

where F1 is given by (13), and FCf() is

Ff( k) kmfe N')(z)d x' (19)

where S N' is the single layer potential with density N' given by

(SM) (;) = ff(;,)N'(;)d4 . (20)

Given the incident field this function is also known. Its value on the surface is just the
continuous limit of its value as the field point x approaches the surface (T-O xh).

Finally Ffl() is

() 2 2ikm2 7r 3 f f f Am(k-) (3) W(,O)d# (21)
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where W satisfies the integral equation

W(.l) = W (.3) - 2[2 -r43Pm,(/)fffA ,,m(# )(l')W(,3'))d#(
_ f ff Q Q(22)

whose Born term is

w() 2 Pm( f - n' (SN)(Z:)dx; (23)

which equals i Ff(/) on the energy shell W13, = # -32) 1/2 "

5. PLANE WAVES

For plane wave incidence

= exp(ik'x) , (24)

we have, using (13), that

FN1(k) - iki Am(-k i) , (25)

which describes single scattering (one A-function) from incident state k' to scattered
state k. Fff can be written using (19) as

F(k) = 2[27r] 3 k f3f f f (A(-k)d3 , (26)

which describes double scattering (two A-functions) from incident state ki' into all
states f, propagation in these states ( with the propagator G ), and rescattering into
state k. This is just the matrix element of the double scattering term between an
incident plane wave state and scattered state k. The function FN in lowest order has
three A-functions and describes triple and higher order scattering. The functions FN

and F/ appear to be the limiting case for analytical approximation methods. Triple
and higher order scattering must be approached numerically. Note that in terms of the
separation we described, both single and double scattering terms are given ezplicitly in
terms of the incident field. This is also, of course, true for the more general case of
non-plane wave incidence, although for the latter more integrals are involved.
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6. KIRCHHOFF APPROXIMATION

It can easily be seen that the (single scattering) Kirchhoff approximation for plane
wave incidence applied to (10) yields the result

F5(kt) = i(k - km) Am(k-k) - (27)

Comparison with the exact single scattering result (25) indicates that the Kirchhoff
approximation gets some of the single scattering right, but then approximates the
remaining true multiple scattering by a single scattering term involving the scattering
state k.

7. AVERAGES

There are two ways to determine average field or intensity quantities if the surface
is random. One is to do a straightforward numerical solution of the deterministic
equations for each member of the statistical ensemble of surfaces (Monte Carlo
calculation), and then to form the averages of the desired quantities. For a one-
dimensional surface this has been done in coordinate-space by Thorsos [8]. The method
includes all orders of multiple scattering since it is the solution of an integra, equation.
The second way is to apply averaging operators to the equations to generate integral
equations on the field average (coherent field or Dyson equation) or the average of the
second (or higher order) moments of the field (Bethe-Salpeter, etc. equations). In k-
space and using diagram methods we have previously described this procedure [1-3,51.
Here we adopt the latter philosophy but only applied to explicit representations of
single and double scattering.

The averaging operator E is an integral operator whose dimensionality (and
integration variables) is the number of random variables involved and whose kernel is
the joint probability density function of all the random variables. We have expressed
the scattering amplitudes in terms of Am-functions, and each Am-function contains
three random variables, the height function h, and the two slope terms, h. and hy.
Coherent averages are defimed (here) as first taking the averages of the scattering
amplitudes FN or FJ and then forming the coherent intensity from the square of the
magnitude of this result. For coherent single scattering we thus have three random
variables, and for coherent double scattering, six. For Gaussian height distribution and
Gaussian correlation function (or, in general, for aay statistically homogeneous or
spatially stationary process) it can be shown that the coherent averages for any order
of multiple scattering yield intensities which are non-zero in only the specular direction.
For incoherent scattering (here) we first form the magnitude squared of the scattering
amplitudes and then apply the averaging operator. For incoherent single scattering we
thus have six random variables (two A-functions) and for incoherent double scattering,
twelve. The latter, of course, begins to get formidable.
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In spite of the apparent multivariability, the restriction to Gaussian statistics
results in only two-point moments (correlation function) on the surface heights and
slopes. There is only one correlation function but because of the multivariability it has
several combinations of coordinate variability. Many coordinate derivatives also occur
(for height-slope correlations) and second derivatives (slope-slope correlations). It is
tempting because of all this variability to carry out a partial integration of the Am-
functions. The result, neglecting the partially integrated term is

Am(Ck) A km(k) -1 A(k) , (28)

where

A(ct) = ff di, (29)

and thus reducing the random variability of each Am-function to a single random
variable, the surface height. This essentially decorrelates heights and slopes.
Attractive as this approximation is in terms of analysis, there is no understanding of its
effect in terms of physical modelling, in particular for scattering processes involving
large heights and slopes.

8. EXAMPLES

For a Gaussian process we list two examples of the incoherent intensity. One is
for single scattering and one for double scattering. For single scattering the incoherent
(/) intensity is

III(.) = EIF,(t)12  (30)

where for F, we give the result in such a way that it includes the exact single
scattering result (25) or the Kirchhoff result (27). It is a single integral and includes all
height slope correlations

o 5

87rd2L'f pexp [- kocal (1-4(p))] F Vi(,p)dp , (31)

0 j=1

where d2 is the ensonified surface area, L is the correlation distance, k0 the
wavenumber, a the rms height, c = cosd + cosd', !(p) the Gaussian correlation function
(where p is dimensionless) and
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V,(,p) = Jo(Mp) K , (32)

V2(0, p) = 4p,,(p)JI(Mp) e koa(o/L)(K1 cos6 + K 2 sinG)K 3 , (33)

V3 (0,p) = 2(p)Jo(Mp)(a/L) 2 (KI +KI) , (34)

V4 (0, p) = - 4p 2 Ap) [1 + (koca)21,gp)] Jo(Mp) (alL)' IKI cosG+ K 2 sin] 2 (35)

and

V5 (8, p) = 4M- p/ (p) [1 + (k0 cu)2,LU(p)] J I(MP)

(o/L) ' {(KI cOK+ K2sin8)2 - 2 (K 1 + K2)} (36)

where the J's are Bessel functions and

M= 14 - k'jL (37)

Here if K, = k' - ky we have the Kirchhoff result from (27) and if Kj = k', the exact

single scattering result from (25). With a Taylor expansion in the exponential the

integrals can be evaluated using tables.

The second example is that of exact double scattering for a Gaussian process
where in order to carry out the averaging it was necessary to carry out a partial

integration of the Am,-functions using (28) ( i.e. heights and slopes are not correlated).

In addition the Taylor expansion mentioned to evaluate (31) is used. The result is

E 'yk. 4 d - Ll k'- k,' S si " , (3s)
-4 ad kL I 4~) SieiI (38)

where

Ai= (( k)1(k9)
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At = (k'-4)/(k -kz) ,(40)

(which is a transverse vector),

Si = (k£ Am) 2 (# i 2 -46) - 1/ 2  (41)

8' = 2(1 + A')-'(k' A2- k. At) (42)

6' = (k')2 (1+ A2)- I(A - 1- 2k'. A,/k ) (43)

and S is just S' with k' replaced by . Although it has been possible to do the full
evaulation it is under the restriction of uncorrelated heights and slopes. I regard this as
a severe restriction and am presently attempting to overcome it.
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